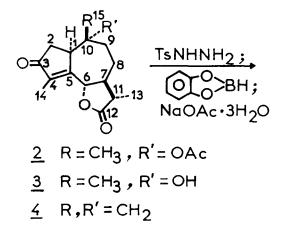
Tetrahedron Letters No. 9, pp 851 - 854, 1978. Pergamon Press. Printed in Great Britain.

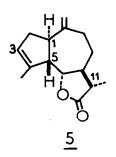
SYNTHESIS OF (+)-PACHYDICTYOL-A¹

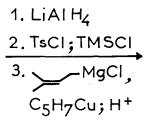
Andrew E. Greene

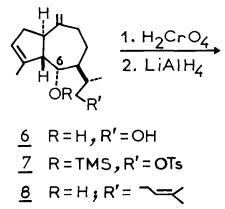
Laboratoire de Chimie Organique, C.E.R.M.O. Université Scientifique et Médicale, 38041 Grenoble, France

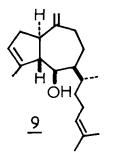
(Received in UK 3 January 1978; accepted for publication 13 January 1978)


The diterpene alcohol pachydictyol-A (9), isolated from the brown marine alga <u>Pachydictyon coriaceum</u> (<u>Dictyotaceae</u>), was structurally and stereochemically elucidated by X-ray crystallography and was shown to possess the hydroazulene skeleton, previously unknown among the diterpenes². Interestingly, pachydictyol-A exhibits mild antibiotic activity <u>vs.Staphyloccus</u> <u>aureus</u>. We wish to report a short, highly stereoselective synthesis of the natural material from $(-)-\alpha$ -santonin using as the key step a reductive transposition that introduces the correct <u>trans</u> ring fusion.


 α -Santonin (<u>1</u>) is easily converted^{3,4,5} by photochemical rearrangement, hydrolysis, and dehydration to the known⁴ crystalline dienone-lactone <u>4</u>. This intermediate not only possesses the general framework of pachydictyol-A but in addition the correct absolute stereochemistry at 3 of the 4 asymmetric centers and the C-10 exocyclic methylene unit already in place. This last feature was considered to be important due to the otherwise general difficulty in cleanly transforming such tertiary C-10 alcohols to the corresponding exocyclic methylenes⁶.


Treatment⁷ of the conjugated ketone <u>4</u> sequentially with <u>p</u>-toluenesulfonylhydrazine, catecholborane and sodium acetate produced the Δ^3 -olefin <u>5</u>, homogeneous by VPC and TLC⁸, in 55% yield after purification on silica gel [[α]³⁰_D = +1.8° (c, 1.7, CHCl₃); I.R. v(film) 3080, 3040, 1775, 1640, 895 cm⁻¹; N.M.R. δ (CCl₄) 5.33 (br. s., 1-H), 4.82 (br. s., 2-H), 4.27 (t, J=9 Hz, 1-H), 1.88 (s, 3-H), 1.15 ppm (d, J=6 Hz, 3-H); m/e 232 (M⁺)].


The <u>trans</u> ring fusion assignment⁹ in <u>5</u> was arrived at by analogy with the results obtained using enone <u>2</u>. Treatment of <u>2</u> under the aforementioned conditions smoothly afforded a crystalline compound <u>10</u> (<u>5</u>, where $<_{OAC}^{CH}$ replaces the exocyclic methylene) [mp 117-118°; [α]_D²⁴ = -35° (c, 1.7, CHCl₃)] that was clearly different from the known <u>cis</u>-fused product (1- α , 5- α H's) [mp 66-67°; [α]_D²⁴ = +8° (c, 1.7, CHCl₃)] ⁵ although the IR and NMR spectra were quite similar to those reported for the latter. Oxidation (SeO₂; Jones) of <u>10</u> gave back <u>2</u>, albeit in low yield as was the case with the <u>cis</u>-fused product⁵, strongly suggesting that the only difference between the two is the stereochemistry at C-5, <u>i.e.</u> compound <u>10</u> must have 5- β hydrogen and thus be trans-fused¹⁰.


 $\frac{1. hv, AcOH}{2. KOH}$ $3. SOCI_2$ $\frac{1}{2}$

Pachydictyol - A

After considerable study, it was found that "prenylation" of lactone 5 could be effectively carried out as follows. Lithium aluminum hydride reduction of 5 gave diol 6, as a gum, which was treated at -30° in pyridine first with excess p-toluenesulfonyl chloride (TsCl) and then with excess chlorotrimethylsilane (TMSCl). The resulting primary tosylate 7, essentially free of tetrahydrofuran side products, was immediately subjected to a coupling reaction with 3-methyl-2-butenylmagnesium chloride and 1-pentynylcopper in ether¹¹, which was then followed by brief exposure to acid to afford 6-epi-pachydictyol-A (8) in 30-40% overall yield from lactone 5 [[]] $_{\rm D}^{30}$ = +67° (c, 1.7, cyclohexane) ; I.R. v(film) 3080, 3040, 1635, 885 cm⁻¹ ; N.M.R. δ (CCl₄) 5.36 (br. s., 1-H), 5.00 (t, J=6 Hz, 1-H), 4.58 (br. s., 2-H), 3.86 (m, 1-H), <u>ca</u>. 1.7 (2s, 9-H), 0.83 ppm (d, J=7 Hz, 3-H) ; m/e 288 (M⁺)].

Acknowledgement

The author is most grateful to Prof. P. Crabbé and Dr. J.L. Luche for their interest in this work, to Dr. Luu Bang for a gift of α -santonin, and to Profs. J.J. Sims, L. Minale, and E. Fattorusso for samples of pachydictyol-A.

References

- Contribution n°24 from the Laboratoire de Chimie Organique, CERMO. For n°23 see : J.L. Luche, submitted for publication.
- 2. D.R. Hırschfeld, W. Fenical, G.H.Y. Lin, R.M. Wing, P. Radlick, and J.J. Sims, <u>J. Amer. Chem. Soc.</u>, <u>95</u>, 4049 (1973). See also : E. Fattorusso, S. Magno, L. Mayol, C. Santacroce, D. Sica, V. Amico, G. Oriente, M. Piattelli, and C. Tringali, <u>J.C.S. Chem. Comm.</u>, 575 (1976) ; V. Amico, G. Oriente, M. Piattelli, C. Tringali, E. Fattorusso, S. Magno, and L. Mayol, <u>ibid</u>., 1024 (1976).
- D. Arigoni, H. Bosshard, H. Bruderer, G. Büchi, O. Jeger, and L.J. Krebaum, Helv. Chim. Acta., <u>180</u>, 1732 (1957).
- 4. D.H.R. Barton, P. de Mayo, and M. Shafig, <u>J. Chem. Soc</u>., 929 (1957).
- 5. E.H. White, S. Eguchi and J.N. Marx, <u>Tetrahedron</u>, <u>25</u>, 2099 (1969).
- 6. See, for example : F. Shafizadeh and N.R. Bhadane, <u>J. Org. Chem.</u>, <u>37</u>, 3168 (1972) ; E. Piers and K.F. Cheng, <u>Can. J. Chem.</u>, <u>48</u>, 2234 (1970) ; A. Corbella, P. Gariboldi, G. Jommi, F. Orsini, and G. Ferrari, <u>Phytochemistry</u>, <u>13</u>, 459 (1974) ; K.J. Robertson and W. Fenical, <u>ibid.</u>, <u>16</u>, 1071 (1977) ; J.A. Marshall, W.F. Huffman, and J.A. Ruth, <u>J. Amer. Chem. Soc</u>., <u>84</u>, 4691 (1972).
- 7. G.W. Kabalka, D.T.C. Yang, and J.D. Baker, Jr., <u>J. Org. Chem.</u>, <u>41</u>, 574 (1976); G.W. Kabalka, J.D. Baker, Jr., and G.W. Neal, <u>J. Org. Chem.</u>, <u>42</u>, 512 (1977).
- Exposure of <u>5</u> to potassium <u>t</u>-butoxide in <u>t</u>-butanol afforded a mixture of <u>5</u> and its C-11 methyl epimer, which were well separated on TLC, thus giving a further indication of the homogeneity of this compound.
- Proton NMR determination of the C-5 stereochemistry is rather unreliable. See, for example, reference 5.
- 10. The stereoselective formation of 5 from 4 and 10 from 2 at first appears surprising in view of the fact that hydrogenation⁵ and certain 1,4 -reductions of 2 afford nearly exclusively the <u>cis</u>-fused system. These results, however, are consistent with the proposed reaction mechanism⁷.
- 11. <u>Cf.</u>, F. Derguini-Boumechal, R. Lorne, and G. Linstrumelle, <u>Tetrahedron</u> <u>Lett</u>., 1181 (1977) ; E.J. Corey and D.J. Beames, <u>J. Amer. Chem. Soc</u>., <u>94</u>, 7210 (1972).
- 12. H.C. Brown, C.P. Garg, and K.T. Liu, <u>J. Org. Chem.</u>, <u>36</u>, 387 (1971).